Posts

How to control White feces disease in Shrimp Farming

Image
Introduction: During the early 2010, concerned by high shrimp selling prices, many manufacturers decided to use improved stocking densities in the pursuit of higher production levels. However, abnormally high water temperatures (>32°C) and greater feeding rates resulted in increased organic matter levels in the ponds, with the occurrence of a new pathological entity called “ white feces disease ”. The disease was first identified in Penaeus monodon cultivated in low salinity waters (3- 5‰), but it was far along spread throughout complete shrimp production area, where currently 99% production corresponds to Litopenaeus vannamei.  Disease scenario: The disease happens under different soil conditions, and it results in depreciated water quality. Peak mortality rates are seen in the appearance of very low oxygen (<3.0 mg/L)/low alkalinity (<80 ppm) levels. Initial disease signs appear in both control feed trays and at water surface, where abundant f

Water Quality Management in Shrimp Culture

Image
Water quality management is basically the management of water quality parameters daily to keep it in optimal conditions for growth of shrimp .   This is very important to prevent the shrimp experience stress that can accelerate the shrimp to various diseases. Water quality parameters that must be managed well are: (1) Transparency and Water Color, (2) pH  (Potential Hydrogen) (3) DO  (Dissolved Oxygen) (4) Salinity (5) Temperature (6) TAN (Total Ammonia Nitrogen) (7) Free Ammonia (NH3) and (8) Alkalinity Transparency and Water Color: These water quality parameters reflecting the type and density of plankton.   Core of this management is that each change can be followed and is anticipated to avoid stress on the cultured shrimp.   The more intense the color of water signifies the more dense the number of existing plankton.   Plankton density is too high may affect fluctuations in dissolved oxygen and pH in the pond.   On a sunny day, the amount of dissolved o

Chemical and physical factors that affect the biological growth of shrimp

Image
In order  L. Vannamei   can grow optimally, it needs a place to live that can provide state physics, chemistry, and biology is optimal. Physical environmental conditions are including temperature and salinity. While the chemical conditions is including pH, dissolved oxygen (DO), nitrate, orthophosphoric, and the presence of plankton as natural feed. Should be noted that environmental conditions can inhibit the growth of shrimp, shrimp can be deadly, such as the emergence of toxic gases and pathogenic microorganisms. Temperature is one factor controlling the speed of biochemical reactions.   This is because the temperature can determine the metabolic rate of shrimp and other aquatic organisms.   Low temperatures will result in a lower metabolic system in contrast to the high temperatures will spur a more rapid metabolism.   In order for the cultivation of L.   Vannamei to work well, pond waters temperature range suggested is between 28 - 32o C. Water transparency v

Biofloc technology

Image
One of the inherent elements of characteristic aquatic ecosystems environments is the practically entire reusing of feed materials through the natural biological food web. Fish discharges are metabolized by microorganisms, reaped thus by planktonic creatures (potentially reused inside, e.g. algea control harvested gathered by zooplankton) and in the long run back to the fish. This element is still fundamental in broad culture lakes, however its part decreases as stocking thickness ( pond escalation ) is expanded. Organic loads The organic load in the more escalated pond is high, and an expansive portion of the organic matter settles onto the oxygen-restricted pond base, making anaerobic conditions, backing off the bio-reusing grouping and notwithstanding prompting to the generation of lethal mixes. What's more, the high feed load, stratification, and restricted oxygen supply will prompt to the restraint of nitrogenous waste digestion system, including the

Diseases of Shrimp

Image
Diseases of Shrimp Shrimp aquaculture is the most important marine aquaculture industry. In spite of the hazardous development in world creation of developed shrimp, there have likewise been stunning, intermittent misfortunes because of ailments. Subsequently, sicknesses are currently considered as one of the basic constraining elements in the shrimp culture. Genuine viral ailment episodes of shrimp test the shrimp business to be better arranged in the perspective of an expanded learning about shrimps and their pathogens so that ailment counteractive action techniques could be moved forward. This requires moved attention to biosecurity, that is, conceivable strategies for developing shrimp in limited frameworks intended to keep the section of potential pathogens. The business likewise understood that a decent number of ailment episodes started from reckless transboundary development of tainted yet terribly typical aquaculture stocks. Methods of Disease Control in Shrim

Pond Preparation and Management

Image
Pond Preparation and Management Prior to a Pond can be supplied for another product, the extreme squanders, which collect in the pond amid the past harvest, must be evacuated and the dirt and water molded. Developing of shrimp in a disgracefully arranged lake may prompt to trouble in lake administration amid the way of life period, which could bring about a lessening underway limit of the lake. Pond Cleaning The cleaning of a Pond or evacuation of the squanders, particularly the natural and phosphatic squanders that have amassed in the lake base could be, expert by drying, liming and furrowing. In any case, these strategies could in any case leave an unfriendly impact on the water and soil quality in the lake, which could bring about a decline in the generation limit of the lake. There are two strategies for cleaning a lake as per the likelihood of the lake to be dried: Dry Method This strategy is utilized when the pond base can be dried tota