Posts

Showing posts with the label Organic Load

BIOSECURE SHRIMP FARMING TECHNOLOGY

Image
In light of the devastating disease problems currently plaguing the global  shrimp farming  industry, water exchange has apparently become a risky management option for maintaining acceptable water quality. The biosecure shrimp farming system is an evolving culture practice which provides means to achieve a higher degree of biosecurity. Biosecurity in aquaculture is the sum of all procedures in place to protect living organisms from contracting, carrying, and spreading diseases and other non-desirable health conditions, with biotherapeutic agents like probiotics. The Central Institute of Brackish water Aquaculture (CIBA) has developed a Bio secure Shrimp Farming Technology (BSFT) based on three years of study, which includes several yard experiments and two pond trials, involving investigations on utilization of bio therapeutic agents, water and sediment quality parameters in relation to modifications in culture practices. It differs from conventional farming with regard to pr

The Need For Biosecurity in Aquaculture

Image
Disease challenge by viruses, bacteria, fungi and toxic algae presents a major threat to profitable aquaculture production. Biosecurity, in other words reducing the number of infectious organisms in the aquaculture environment, is the most effective form of protection. Biosecurity is a set of management practices, which reduce the potential for the introduction, and spread of disease-causing organisms onto and between sites. Bio-security procedures, particularly disinfection and sanitation, should be combined with selection of pathogen-free seed and strategic treatments to either eradicate or reduce these pathogens to non-infectious levels. The Neospark Biosecurity Programme has been developed over many years with leading aquaculture producers around the nation. Neospark products and procedures have proven effective in practical farm conditions against a broad spectrum of pathogens. These include persistent and difficult to destroy immunosuppressive viruses causing WSSV,

Importance Components of BioSecurity

Image
Biosecurity involves following strict management protocols to prevent specific pathogens from entering a system or reducing the numbers. A good understanding of pathogen reservoirs is important. Quarantine, sanitation and disinfection are all important components of biosecurity . Quarantine , defined as the isolation of an organism or group of organisms to prevent the introduction or spread of infectious disease, is a standard procedure that is extremely important in aquaculture. In practical terms, quarantine is a standard set of procedures that should be observed to prevent the introduction of pathogens or diseases into a population of fish, prawn and shrimp in aquaculture. The quarantine protocols should be strictly adhered and should follow as many of the following protocols as are practical: testing of a sample of shrimp, prawn and fish prior to bringing them onto the facility. all-in, all-out stocking procedures. isolation or separation from other populations for

Water Quality Management in Shrimp Culture

Image
Water quality management is basically the management of water quality parameters daily to keep it in optimal conditions for growth of shrimp .   This is very important to prevent the shrimp experience stress that can accelerate the shrimp to various diseases. Water quality parameters that must be managed well are: (1) Transparency and Water Color, (2) pH  (Potential Hydrogen) (3) DO  (Dissolved Oxygen) (4) Salinity (5) Temperature (6) TAN (Total Ammonia Nitrogen) (7) Free Ammonia (NH3) and (8) Alkalinity Transparency and Water Color: These water quality parameters reflecting the type and density of plankton.   Core of this management is that each change can be followed and is anticipated to avoid stress on the cultured shrimp.   The more intense the color of water signifies the more dense the number of existing plankton.   Plankton density is too high may affect fluctuations in dissolved oxygen and pH in the pond.   On a sunny day, the amount of dissolved o

Chemical and physical factors that affect the biological growth of shrimp

Image
In order  L. Vannamei   can grow optimally, it needs a place to live that can provide state physics, chemistry, and biology is optimal. Physical environmental conditions are including temperature and salinity. While the chemical conditions is including pH, dissolved oxygen (DO), nitrate, orthophosphoric, and the presence of plankton as natural feed. Should be noted that environmental conditions can inhibit the growth of shrimp, shrimp can be deadly, such as the emergence of toxic gases and pathogenic microorganisms. Temperature is one factor controlling the speed of biochemical reactions.   This is because the temperature can determine the metabolic rate of shrimp and other aquatic organisms.   Low temperatures will result in a lower metabolic system in contrast to the high temperatures will spur a more rapid metabolism.   In order for the cultivation of L.   Vannamei to work well, pond waters temperature range suggested is between 28 - 32o C. Water transparency v