Posts

Showing posts with the label Vannamei Culture

Bacterial disease of Shrimp

Rickettsial Infections This infection is not recorded yet from Indian waters, systemic rickettsial infections were reported from cultured P. monodon from Malaysia and Singapore. In P. monodon, the rickettsia occurred within large cytoplasmic vacuoles where it formed-microcolonies of 19 to 33 f.lm in diameter. In heavy infections, cells with rickettsial inclusions were widespread in mesodermally and ectodermally derived tissues, but absent in endodermally derived tissues such as midgut, hepatopancreas and caeca. Experimental treatment using medicated feeds containing 1.5 to 2. 0 kg of oxytetracycline per 1000 kg  offered  was found to be successful in reducing monalities. Vibriosis Vibrio sp. were found to constitute the predominant normal microflora of the culturable species of shrimps. Due to their rich presence in the shrimp's microflora, researchers have found Vibrio sp. as frequent and opponunistic pathogen of the shrimps. The opponunistic pathogenic Vibrio sp. es

An overview of L. vannamei shrimp aquaculture

Image
Litopenaeus vannamei   is the most commonly cultured shrimp in Latin America and Southeast Asia, representing over 90 % of total shrimp production. India with its 8,118 km of coastline and 1.24 million Ha of brackish water area is the second shrimp producer in the world, with Andhra Pradesh being India’s largest vannamei farming area. Andra Pradesh, situated on the southern coast of the country, has 974 km of coastline and 175,000 Ha of brackish water. Andhra Pradesh has gradually increased its share in total marine exports of the country, with the United States and Vietnam as the main export markets. Currently, the state’s  L. vannamei aquaculture  is facing different issues and challenges to achieve sustainability related to diseases outbreaks, lack of availability of quality seed, high feed costs, unauthorized farming, international price fluctuations, less demand in the domestic market, and others. If farmers implement Better Management Practices (BMP) and  biosecurity  in L. v

The Need For Biosecurity in Aquaculture

Image
Disease challenge by viruses, bacteria, fungi and toxic algae presents a major threat to profitable aquaculture production. Biosecurity, in other words reducing the number of infectious organisms in the aquaculture environment, is the most effective form of protection. Biosecurity is a set of management practices, which reduce the potential for the introduction, and spread of disease-causing organisms onto and between sites. Bio-security procedures, particularly disinfection and sanitation, should be combined with selection of pathogen-free seed and strategic treatments to either eradicate or reduce these pathogens to non-infectious levels. The Neospark Biosecurity Programme has been developed over many years with leading aquaculture producers around the nation. Neospark products and procedures have proven effective in practical farm conditions against a broad spectrum of pathogens. These include persistent and difficult to destroy immunosuppressive viruses causing WSSV,

The importance of biosecurity and disinfection in aquaculture

Image
The world's demands for high quality aquaculture products make control of diseases increasingly important. Good Bio security measures are vital to maintaining healthy animals, to reducing the risk of acquiring diseases in aquaculture facilities and to harvest high quality good yield. Biosecurity Biosecurity can be defined as ‘the measures and methods adopted to secure a disease free environment in all phases of aquaculture practices (i.e. hatcheries, nurseries, growout farms) for improved profitability’. Biosecurity protocols are intended to maintain the "security" of a facility (i.e., prevent entry of, or reduce overall numbers prior to entry) with respect to certain diseasecausing organisms (parasites, bacteria, viruses and fungi) that may not be present in a particular system. In short, food producers have consumer safety as their primary target. If the food they produce is not safe, no economic model works. The second and equally important target

How to control White feces disease in Shrimp Farming

Image
Introduction: During the early 2010, concerned by high shrimp selling prices, many manufacturers decided to use improved stocking densities in the pursuit of higher production levels. However, abnormally high water temperatures (>32°C) and greater feeding rates resulted in increased organic matter levels in the ponds, with the occurrence of a new pathological entity called “ white feces disease ”. The disease was first identified in Penaeus monodon cultivated in low salinity waters (3- 5‰), but it was far along spread throughout complete shrimp production area, where currently 99% production corresponds to Litopenaeus vannamei.  Disease scenario: The disease happens under different soil conditions, and it results in depreciated water quality. Peak mortality rates are seen in the appearance of very low oxygen (<3.0 mg/L)/low alkalinity (<80 ppm) levels. Initial disease signs appear in both control feed trays and at water surface, where abundant f