Posts

Showing posts with the label shrimp immunity

The Need For Biosecurity in Aquaculture

Image
Disease challenge by viruses, bacteria, fungi and toxic algae presents a major threat to profitable aquaculture production. Biosecurity, in other words reducing the number of infectious organisms in the aquaculture environment, is the most effective form of protection. Biosecurity is a set of management practices, which reduce the potential for the introduction, and spread of disease-causing organisms onto and between sites. Bio-security procedures, particularly disinfection and sanitation, should be combined with selection of pathogen-free seed and strategic treatments to either eradicate or reduce these pathogens to non-infectious levels. The Neospark Biosecurity Programme has been developed over many years with leading aquaculture producers around the nation. Neospark products and procedures have proven effective in practical farm conditions against a broad spectrum of pathogens. These include persistent and difficult to destroy immunosuppressive viruses causing WSSV,

The Challenge of Shrimp Diseases

Image
Aquaculture is one of the fastest growing food-production sectors but the economic impact that parasites and bacterial, fungal and viral diseases have on the industry is highly significant for the many countries that rely heavily on this industry. Research into the diseases that affect penaeid shrimps that are grown in aquaculture systems is therefore vital, writes Bob Carling for TheFishSite. Two diseases that are currently being actively in Shrimp farming are: 1. The bacterial infection, Acute Hepatopancreatic Necrosis Disease (AHPND) – also called Early Mortality Syndrome (EMS) 2. The fungal infection, hepatopancreatic microsporidiosis caused by Enterocytozoon hepatopenaei (EHP). AHPND Acute Hepatopancreatic Necrosis Disease (AHPND) is a problem of the main countries that farm shrimps – China, Thailand, Vietnam and Malaysia. AHPND can occur in the first 30 days after stocking shrimp into ‘grow-out’ ponds, which is why AHPND is commonly, but

Measuring control in Aquaculture Biosecurity

Image
Biosecurity is the management practices that prevent non-infected, healthy animal populations from being exposed to infectious or parasitic agents. Common biosecurity measures include: 1. Sanitation:                        Sanitation includes the cleaning and disinfecting of hatcheries, holding facilities, tanks, ponds, handling and vaccination equipment, etc. Cleaning must be done before disinfecting. Disinfectants include chlorine, heat, steam, formalin, and other chemical compounds. All of the chemical disinfectants are toxic, so all equipment should be rinsed well after disinfecting. 2. Vertical disease transmission:                        Vertically transmitted diseases (from parent to offspring) can be prevented by using healthy, disease-free broodstock. 3. Egg disinfection:                         Egg disinfection with iodine or other solutions at the time of the water hardening of eggs can reduce the incidence of disease problems of eggs and larvae. 4. Traf

Importance Components of BioSecurity

Image
Biosecurity involves following strict management protocols to prevent specific pathogens from entering a system or reducing the numbers. A good understanding of pathogen reservoirs is important. Quarantine, sanitation and disinfection are all important components of biosecurity . Quarantine , defined as the isolation of an organism or group of organisms to prevent the introduction or spread of infectious disease, is a standard procedure that is extremely important in aquaculture. In practical terms, quarantine is a standard set of procedures that should be observed to prevent the introduction of pathogens or diseases into a population of fish, prawn and shrimp in aquaculture. The quarantine protocols should be strictly adhered and should follow as many of the following protocols as are practical: testing of a sample of shrimp, prawn and fish prior to bringing them onto the facility. all-in, all-out stocking procedures. isolation or separation from other populations for

Water Quality Management in Shrimp Culture

Image
Water quality management is basically the management of water quality parameters daily to keep it in optimal conditions for growth of shrimp .   This is very important to prevent the shrimp experience stress that can accelerate the shrimp to various diseases. Water quality parameters that must be managed well are: (1) Transparency and Water Color, (2) pH  (Potential Hydrogen) (3) DO  (Dissolved Oxygen) (4) Salinity (5) Temperature (6) TAN (Total Ammonia Nitrogen) (7) Free Ammonia (NH3) and (8) Alkalinity Transparency and Water Color: These water quality parameters reflecting the type and density of plankton.   Core of this management is that each change can be followed and is anticipated to avoid stress on the cultured shrimp.   The more intense the color of water signifies the more dense the number of existing plankton.   Plankton density is too high may affect fluctuations in dissolved oxygen and pH in the pond.   On a sunny day, the amount of dissolved o

Diseases of Shrimp

Image
Diseases of Shrimp Shrimp aquaculture is the most important marine aquaculture industry. In spite of the hazardous development in world creation of developed shrimp, there have likewise been stunning, intermittent misfortunes because of ailments. Subsequently, sicknesses are currently considered as one of the basic constraining elements in the shrimp culture. Genuine viral ailment episodes of shrimp test the shrimp business to be better arranged in the perspective of an expanded learning about shrimps and their pathogens so that ailment counteractive action techniques could be moved forward. This requires moved attention to biosecurity, that is, conceivable strategies for developing shrimp in limited frameworks intended to keep the section of potential pathogens. The business likewise understood that a decent number of ailment episodes started from reckless transboundary development of tainted yet terribly typical aquaculture stocks. Methods of Disease Control in Shrim